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Abstract: This survey provides a comprehensive examination of modern cryptographic 

algorithms, spanning both symmetric-key and public-key paradigms. It delves into the 

structural design, mathematical foundations, operational principles, and known 

cryptanalytic vulnerabilities of widely adopted algorithms such as AES, ChaCha20, RSA, 

and Elliptic Curve Cryptography (ECC). The report highlights the trade-offs between 

computational efficiency and security strength across different use cases and deployment 

environments. Additionally, it analyzes modern modes of operation (e.g., GCM, Poly1305), 

digital signature schemes (e.g., ECDSA, EdDSA), and secure key exchange protocols. 

Emphasis is placed on emerging trends, including post-quantum cryptographic schemes 

like Kyber and Dilithium, which aim to ensure resilience against quantum adversaries. 

Real-world applications in secure messaging, VPNs, blockchain, and IoT are examined to 

demonstrate how cryptographic choices are influenced by domain-specific constraints such 

as latency, energy efficiency, and trust models. This survey aims to serve as a foundational 

reference for researchers and practitioners seeking to understand the evolving landscape 

of algorithmic cryptography and its practical implications. 

Keywords: Elliptic Curve Cryptography (ECC), Key Cryptography, Public Key Cryptography, 

RSA, Cryptanalysis, Secure Communication Protocols, Post-Quantum Cryptography 

(PQC) 

 

1. Introduction  

Modern cryptography underpins the security of digital communications, protecting everything from 

personal messages to financial transactions. This report provides a comprehensive survey of 

cryptographic algorithms, covering symmetric-key (secret-key) ciphers and public-key 

(asymmetric) techniques, along with their mathematical foundations, cryptanalytic vulnerabilities, 

performance considerations, and real-world use cases. Symmetric ciphers (like AES and 

ChaCha20) use a single shared secret key for encryption and decryption, offering high speed and 

efficiency for bulk data encryption [3][6]. Public-key algorithms (like RSA and Elliptic Curve 

Cryptography) use key pairs (public/private) to enable encryption, digital signatures, and key 

exchange without a pre-shared secret, at the cost of higher computational complexity. We review 

block and stream cipher constructions, modes of operation, and prominent algorithms in each class. 

We then examine asymmetric algorithms including RSA, DSA, ElGamal, and ECC-based schemes, 

Comprehensive Survey of Symmetric and Public-Key 

Cryptographic Algorithms: Foundations, Attacks, and 

Applications 
 

An Open-Access, Double-Blind, Peer-Reviewed, Refereed International Journal of Multidisciplinary Research 



 
                                                                                    ISSN: 2347-1697   

International Journal of Informative & Futuristic Research (IJIFR)  
 

      Volume - 12, Issue -10, June 2025 

Available Online through:: https://ijifr.org/pdfsave/18-06-2025917IJIFR-V12-E10-005.pdf 
21 

and how they are used in protocols (e.g., SSL/TLS, PKI, secure messaging)[6][26][27]. The 

mathematical underpinnings in number theory and algebra (modular arithmetic, discrete logarithms, 

finite fields, elliptic curves) are summarized to illuminate why these algorithms are secure[27]. We 

survey cryptanalysis techniques ranging from brute force and classical attacks (linear, differential) 

to advanced methods (algebraic attacks, side-channels, padding oracle exploits), highlighting 

known vulnerabilities and defenses. We compare algorithm performance and scalability, including 

security level vs. key size trade-offs and efficiency in hardware/software contexts, and provide a 

comparative table of key sizes and characteristics [27][28]. Finally, we discuss several application 

domains (secure messaging [1][5], VPNs[6][7], blockchain[9][11], IoT[16]) to illustrate how 

cryptographic algorithms are deployed in practice, and we include an overview of post-quantum 

cryptography to contextualize emerging trends [21][22]. 

2. Symmetric Key Cryptography  

Symmetric-key cryptography uses a single secret key for both encryption and decryption of 

messages. It remains the workhorse of data encryption due to its speed and efficiency, especially for 

bulk data [27]. Symmetric ciphers are broadly classified into block ciphers (which operate on fixed-

size blocks of bits using rounds of substitution and permutation) and stream ciphers (which 

generate a keystream to encrypt data bit-by-bit or byte-by-byte) [28]. To securely encrypt arbitrarily 

long messages, block ciphers are used with modes of operation that specify how blocks are chained 

or combined, while stream ciphers inherently produce a continuous stream of key material. We 

review prominent symmetric algorithms, common modes of operation, and their security and usage. 

2.1 Block Ciphers 

Block ciphers transform fixed-length plaintext blocks into ciphertext blocks of the same length 

under a secret key, through multiple rounds of mixing operations (substitutions and permutations). 

The Advanced Encryption Standard (AES) is the de facto symmetric cipher standard worldwide, 

selected by NIST in 2001 to replace the aging DES/3DES ciphers [3]. AES is a 128-bit block cipher 

with key lengths of 128, 192, or 256 bits (providing ~128, 192, or 256 bits of security respectively). 

It uses a substitution-permutation network with 10, 12, or 14 rounds (for 128/192/256-bit keys) and 

was designed for both security and performance. AES encryption is extremely fast especially with 

hardware support (e.g., Intel AES-NI instructions [29] give an 8× speedup, from ~28 cycles/byte 

down to ~3.5 cycles/byte). AES is widely regarded as highly secure; no practical attacks exist 

against the full 10-round AES-128 or its larger-key variants, aside from brute-force which is 

computationally infeasible (2
128

 possibilities for a 128-bit key). Indeed, 128-bit keys are considered 

computationally secure against brute force – trying all 2
128

 keys would require on the order of 10
18

 

joules of energy (about 30 GW-years), far beyond realistic limits. AES’s design includes strong 

nonlinear components: its S-box substitution was specifically designed to resist linear and 

differential cryptanalysis by minimizing correlations and differential propagation probabilities. This 

non-linearity and a complex key schedule make AES robust against known cryptanalytic attacks 

[27][30]. 

By contrast, Triple DES (3DES) is an older block cipher based on the DES algorithm (56-bit block 

cipher) applied three times. Standard 3DES uses three independent 56-bit DES keys (168-bit total, 

but with only 112 bits of effective security due to meet-in-the-middle attacks) [31]. 3DES was long 

used in finance and legacy systems but is now considered outdated: its small 64-bit block size 

makes it vulnerable to birthday attacks on large volumes of data (the Sweet32 attack) and its 

performance is much slower than AES. In fact, 3DES is being deprecated and retired from use – 

NIST has officially disallowed new uses of 3DES after 2023. Industry standards have moved to 



 
                                                                                    ISSN: 2347-1697   

International Journal of Informative & Futuristic Research (IJIFR)  
 

      Volume - 12, Issue -10, June 2025 

Available Online through:: https://ijifr.org/pdfsave/18-06-2025917IJIFR-V12-E10-005.pdf 
22 

AES for virtually all new systems, as AES-128 is both stronger and faster than 3DES on modern 

hardware. 

Another notable block cipher is Blowfish [32], designed by Bruce Schneier in 1993 as a free 

alternative to DES. Blowfish has a 64-bit block size and a variable key length (32 up to 448 bits). It 

uses a 16-round Feistel network with complex key-dependent S-boxes. Blowfish gained popularity 

in software implementations and is still found in some encryption products. To date, the full 16-

round Blowfish has no known practical cryptanalytic attacks (cryptanalysis has broken reduced-

round versions). However, Blowfish’s 64-bit block makes it susceptible to the same Sweet32 

birthday attack issues if large amounts of data are encrypted under the same key. Consequently, 

Blowfish is not recommended for new designs encrypting very large files (>4 GB). Its successor 

Twofish (128-bit block, 128–256-bit keys) was a finalist in the AES competition but AES 

(Rijndael) was ultimately selected as the standard [32]. In summary, modern practice has 

consolidated around AES for block cipher needs, with older ciphers like 3DES being phased out. 

Block ciphers like AES provide the core primitives for many encryption protocols, but they must be 

combined with appropriate modes of operation to securely handle arbitrary message lengths and 

patterns. 

2.2 Stream Ciphers 

Stream ciphers generate a pseudorandom keystream that is XORed with plaintext bytes to produce 

ciphertext. They are useful for applications requiring continuous encryption of streaming data or 

where data arrives in unpredictable lengths. A historically prominent stream cipher is RC4 [33], 

designed in 1987, which became widely used (e.g., in early SSL/TLS and WEP for Wi-Fi). RC4 is 

simple and fast in software, but it has well-known weaknesses: biases in its output keystream 

(especially in the initial bytes) lead to practical attacks when used in protocols without careful 

mitigation. Over the past decade, RC4 was found to be insecure in contexts like TLS (e.g., the 

RC4 bias attacks that recover plaintext from ciphertext). This led to RC4 being formally prohibited 

in TLS 1.2 and later; researchers and standards bodies have deprecated RC4 entirely. 

In response to RC4’s shortcomings, modern designs favour stream ciphers with provable security 

properties. One such algorithm is ChaCha20 [3], a 20-round stream cipher designed by Daniel J. 

Bernstein. ChaCha20 (and its variant XChaCha20) is an improved variant of the earlier Salsa20 

cipher. It takes a 256-bit key and 96-bit nonce to generate a keystream with excellent statistical 

properties and no known attacks better than brute force. ChaCha20 has become a widely adopted 

modern stream cipher, especially in TLS and secure messaging. A notable advantage of 

ChaCha20 is its performance on systems without AES hardware acceleration: ChaCha20 is 

designed to leverage common CPU vector instructions and is extremely fast in software. Google 

and others introduced ChaCha20-Poly1305 cipher suites for TLS to improve performance on 

mobile devices, where AES (if not hardware-accelerated) can be slow [6][29]. In fact, ChaCha20 

with the Poly1305 authenticator can be three times faster on mobile devices than AES-GCM, 

according to measurements on Android devices. This makes ChaCha20 highly attractive for 

smartphone applications and VPNs. ChaCha20 is also immune to the specific TLS attacks (BEAST, 

Lucky13, etc.) that affected older cipher configurations [34]. Stream ciphers like ChaCha20 are 

typically used in an Authenticated Encryption construction (e.g., ChaCha20-Poly1305) to provide 

both confidentiality and integrity in one step, similar to AES-GCM. In summary, stream ciphers 

remain important for high-speed encryption, especially on constrained devices, but algorithms like 

ChaCha20 (with robust security and performance) have displaced legacy ciphers like RC4. 
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2.3 Modes of operations 

Block ciphers such as AES operate on fixed-size blocks (typically 128 bits), which necessitates the 

use of modes of operation to securely encrypt longer messages and to provide additional features 

such as authentication. Different modes offer varying security guarantees and performance 

characteristics. The simplest among them is the Electronic Codebook (ECB) mode, where each 

block is encrypted independently. However, ECB is not semantically secure—identical plaintext 

blocks produce identical ciphertext blocks, leading to visible data patterns (such as outlines in 

images). Consequently, ECB is rarely used in practice except in niche cases where data patterns are 

irrelevant. Cipher Block Chaining (CBC) mode improves upon ECB by XORing each plaintext 

block with the previous ciphertext block before encryption, using an initialization vector (IV) for 

the first block. CBC effectively hides plaintext patterns and was historically used in protocols like 

TLS 1.0/1.1 and IPsec. However, CBC alone does not provide integrity and is vulnerable to 

padding oracle attacks if improperly implemented. It can still be secure when used with proper 

padding and combined with an integrity check such as a Message Authentication Code (MAC), 

though modern systems often avoid CBC in favour of authenticated encryption. 

Counter (CTR) mode is another widely used approach that turns a block cipher into a stream cipher 

by encrypting successive values of a counter and XORing the result with plaintext blocks. CTR 

offers benefits such as parallelizability and resistance to error propagation, making it efficient and 

practical. However, it lacks built-in integrity protection and is critically vulnerable if counters or 

IVs are reused, as this can expose plaintext via keystream reuse. To mitigate this, CTR is often 

paired with an external MAC like HMAC or PMAC [27][28]. Modern cryptographic systems 

typically prefer authenticated encryption with associated data (AEAD) modes, which combine 

confidentiality and integrity in a single pass. One such mode is Galois/Counter Mode (GCM), 

which builds on CTR mode and adds integrity using Galois field multiplication. AES-GCM is 

widely adopted in protocols such as TLS 1.2/1.3 and IPsec due to its high performance, especially 

when hardware acceleration for AES is available. It efficiently provides both encryption and 

authentication without needing a separate MAC. On platforms lacking AES acceleration, 

alternatives like ChaCha20-Poly1305 may offer better performance [6]. 

Other modes like Cipher Feedback (CFB) and Output Feedback (OFB) are older methods that 

convert block ciphers into stream ciphers, while XTS mode is used for encrypting disk sectors with 

tweakable encryption to prevent data relocation attacks. Overall, modes of operation are critical to 

deploying block ciphers securely. Current best practices recommend avoiding ECB entirely, using 

CBC only with great caution and integrity checks, and preferring AEAD modes such as AES-GCM 

or ChaCha20-Poly1305 for robust and efficient security in modern applications [3][6][35]. Other 

legacy modes like CFB and OFB are rarely used today. XTS mode is deployed in disk encryption 

software such as BitLocker and VeraCrypt [36]. 

2.4 Security Analysis and Applications of Symmetric Ciphers 

Symmetric algorithms are valued for their speed and high throughput, making them suitable for 

encrypting large data volumes, VPN tunnels, disk encryption, etc. A 128-bit key cipher like AES-

128 is estimated to offer ~128-bit security, which is currently considered safe against any brute-

force attack [27][30]. Thus, attacks on symmetric ciphers typically focus on finding structural 

weaknesses (cryptanalysis) rather than brute force. The best-known classical attacks are linear and 

differential cryptanalysis, which exploit statistical biases in cipher rounds. AES was explicitly 

designed to withstand these: for instance, its S-box’s nonlinearity ensures minimal linear 

correlations and differential probabilities. As a result, no shortcut attacks have been found on full 
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AES – cryptanalysis has only broken reduced-round versions or weakened ciphers with related 

structures. 

Some earlier symmetric algorithms did succumb to cryptanalysis. The original DES (56-bit key) 

was vulnerable to brute force (2
56

 possibilities) – indeed the EFF’s ―DES cracker‖ machine 

demonstrated a DES key could be found in days by 1998. DES was also attacked by differential 

cryptanalysis (Biham and Shamir in the 1990s), although DES’s designers had unbeknownst to the 

public tweaked it to resist those attacks to an extent. The small 56-bit key of DES was the bigger 

issue, and Triple-DES extended its life for a while by effectively using 112-bit keys. As noted, 

however, 3DES and other 64-bit block ciphers now fall to large-scale ―birthday‖ collision attacks if 

too much data is encrypted; this is why NIST has retired 3DES after 2023. Blowfish, despite having 

up to 448-bit keys, has a 64-bit block and thus shares the large-data vulnerability (Sweet32), so it 

should not be used for very large file encryption without re-keying. Modern block ciphers use 128-

bit blocks as a minimum to mitigate this. 

In practical deployments, symmetric ciphers are usually combined with public-key algorithms: for 

example, in SSL/TLS or PGP, a symmetric key (for AES, etc.) is exchanged or wrapped using 

asymmetric cryptography, and then the symmetric cipher handles the bulk data encryption due to its 

efficiency. Symmetric encryption is also the core of secure storage (filesystems encryption, 

database encryption) and communications (VPNs, Wi-Fi WPA3 uses AES-CCM or GCMP, etc.). 

A specific application class is authenticated secure messaging: protocols like Signal (used in 

WhatsApp, Signal Messenger, etc.) rely on symmetric ciphers for message privacy (often AES or 

XChaCha20 for the message encryption) combined with message authentication codes (or built-in 

AEAD tags) to ensure integrity. Symmetric ciphers are further used in constructing cryptographic 

primitives like pseudorandom generators and hash functions (e.g., SHA-3’s Keccak is built from a 

symmetric permutation). Overall, symmetric key cryptography provides the confidentiality layer in 

most systems, and its security hinges on using strong algorithms (AES, ChaCha20) in correct 

modes with proper key management. 

Applications: Virtually every secure application uses symmetric cryptography. For example, in the 

Signal/WhatsApp protocol, once the two parties have established a shared secret via public-key 

key exchange, they derive symmetric session keys which are then used with AES-256 (in CBC or 

CTR with HMAC, or in newer implementations, XChaCha20-Poly1305) to encrypt each message. 

Similarly, VPNs use symmetric ciphers for encrypting data packets: the WireGuard VPN protocol 

uses ChaCha20 for encryption (with Poly1305 for authentication) as a core design choice for high 

performance and security on all platforms, whereas IPsec VPNs commonly use AES-GCM for the 

ESP payload encryption. In the realm of storage, tools like VeraCrypt, BitLocker, and LUKS rely 

on AES (often in XTS mode) to encrypt disk volumes. IoT devices and embedded systems, which 

often have constrained CPUs and no hardware AES support, also utilize symmetric encryption 

(sometimes favoring lighter algorithms or smaller key sizes for speed). NIST has recently 

standardized the Ascon family [16] as a lightweight authenticated cipher for IoT, due to its 

efficiency on small microcontrollers. In summary, symmetric cryptography is ubiquitous, from 

securing web traffic to protecting data at rest, and continues to evolve (e.g., the rise of ChaCha20 in 

mobile and certain TLS configurations for speed). The next sections contrast this with public-key 

cryptography, which addresses different security needs like key exchange and digital signatures. 

3. Public Key Cryptography 

Public-key (asymmetric) cryptography uses pairs of keys: a public key (which can be openly 

shared) and a private key (kept secret by the owner). This enables powerful capabilities such as 
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letting anyone encrypt a message or verify a signature using the public key, but only the holder of 

the corresponding private key can decrypt or sign, respectively. Since its inception in the late 

1970s, public-key cryptography has become the backbone of secure key exchange, digital 

signatures for authenticity, and public key infrastructure (PKI) for identity and certificates. 

Asymmetric algorithms rely on one-way mathematical problems (trapdoor functions) that are easy 

to compute in one direction but believed infeasible to invert without the private key (e.g., factoring 

large integers or computing discrete logarithms). We survey the major public-key algorithms: the 

classic RSA [9] and related schemes (Diffie–Hellman, DSA, ElGamal [27]) based on modular 

arithmetic, and the more modern Elliptic Curve Cryptography (ECC) algorithms like ECDSA 

and EdDSA based on elliptic curve groups [25] [27]. We also discuss their use in protocols 

(SSL/TLS, SSH, PGP, cryptocurrency systems, etc.) and compare their security and performance. 

3.1 RSA, DSA, and ElGamal (Classical Public-Key Algorithms) 

The foundation of practical public-key cryptography began with the Diffie–Hellman (DH) key 

exchange protocol introduced in 1976. DH revolutionized secure communication by allowing two 

parties to establish a shared secret over an insecure channel without transmitting the key itself. 

Importantly, DH is used purely for key agreement, not for direct encryption or digital signatures, 

and its security relies on the computational hardness of the discrete logarithm problem in a finite 

group (commonly modulo a large prime). Shortly after, in 1978, Rivest, Shamir, and Adleman 

introduced RSA—still one of the most widely used public-key algorithms. RSA supports both 

encryption and digital signatures, with its security based on the difficulty of factoring large 

semiprime integers. The public key includes a large modulus n=p⋅q (where p and q are large 

primes) and a public exponent, typically e=65537, while the private key is derived using Euler’s 

totient function. RSA is extensively used in Public Key Infrastructure (PKI), such as digital 

certificates in TLS, and in secure email systems like PGP. Today, a 2048-bit RSA key offers around 

112 bits of security, while a 3072-bit key is recommended for 128-bit security. RSA offers fast 

encryption and signature verification due to the small public exponent but suffers from slower 

decryption and signature generation because of expensive private-key operations. 

The Digital Signature Algorithm (DSA), standardized by NIST in the 1990s (FIPS 186), was 

designed exclusively for digital signatures and not encryption. It shares mathematical roots with the 

ElGamal signature scheme and is based on the discrete logarithm problem. DSA operates over a 

subgroup of a finite prime field, with a key consisting of large parameters p, q, and a generator g. A 

DSA signature consists of two numbers (r,s) and critically depends on using a unique, uniformly 

random nonce for each message; nonce reuse can catastrophically expose the private key—a flaw 

that has occurred in real-world implementations. While DSA provides similar security to RSA for 

comparable key sizes (e.g., 2048-bit DSA ≈ 2048-bit RSA), its usage has declined outside 

government systems. DSA signatures are smaller and faster to generate than RSA, but verification 

tends to be slower, and DSA lacks encryption or key agreement capabilities, limiting its use in 

broader cryptographic protocols like TLS. 

ElGamal encryption, another significant early asymmetric scheme, is an encryption method derived 

from the principles of Diffie–Hellman. It encrypts messages by combining a random exponent with 

the recipient’s public key, producing ciphertexts made of two group elements. Its security also 

stems from the hardness of discrete logarithms, and while it provides semantic security under 

chosen-plaintext attacks (assuming the Decisional Diffie–Hellman assumption), it is malleable and 

not secure under adaptive chosen-ciphertext attacks without additional protection. ElGamal is not as 

widely used as RSA due to its larger ciphertext size and computational demands, but it remains 
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foundational in modern cryptographic constructions. It is used in hybrid encryption schemes (e.g., 

in some PGP variants) and forms the basis of many signature and key exchange protocols. For 

instance, Diffie–Hellman can be seen as an ElGamal encryption of a random key, and DSA is 

essentially a modified ElGamal signature scheme. 

Together, RSA, Diffie–Hellman, DSA, and ElGamal constitute the first generation of public-key 

cryptographic algorithms based on number-theoretic hardness assumptions, specifically integer 

factorization and discrete logarithms. These algorithms have remained secure against classical 

attacks but require very large key sizes—typically 2048 to 3072 bits—to remain resistant to modern 

cryptanalysis and computational advances. The resulting performance issues, especially in 

resource-constrained environments, have led to growing adoption of elliptic curve cryptography 

(ECC), which offers comparable security with significantly smaller key sizes and improved 

efficiency. 

3.2 Elliptic Curve Cryptography: ECDSA and EdDSA 

Elliptic Curve Cryptography (ECC) offers strong public-key security with significantly smaller 

keys than RSA or DSA, thanks to the hardness of the Elliptic Curve Discrete Logarithm Problem 

(ECDLP). Unlike classical discrete log settings, ECDLP lacks known sub-exponential attacks, 

allowing a 256-bit ECC key (e.g., Curve25519 or P-256) to provide security comparable to a 3072-

bit RSA key. This key size reduction translates to faster computations, lower bandwidth use, and 

reduced storage overhead—making ECC ideal for constrained environments like mobile and IoT 

devices. ECC algorithms include ECDH for key exchange and ECDSA for digital signatures. 

ECDH enables two parties to derive a shared secret using elliptic curve key pairs, while ECDSA 

produces compact signatures (e.g., 64 bytes on 256-bit curves) and is widely used in TLS 

certificates, Bitcoin transactions, and secure communications. Compared to RSA, ECC provides 

similar or better security with improved signing speed and smaller keys, though signature 

verification may be slightly slower. 

A modern ECC signature scheme is EdDSA, notably the Ed25519 [25] [27] variant, which 

enhances performance and security by avoiding per-message randomness and using deterministic 

nonces. EdDSA is now standard in OpenSSH, Tor, DNSSEC, and secure messaging protocols due 

to its simplicity, efficiency, and resistance to misuse. It produces 64-byte signatures and is designed 

for ease of secure implementation. ECC has become the preferred choice for public-key 

cryptography in modern systems. TLS 1.3 exclusively uses ECC-based ephemeral key exchange 

(e.g., X25519, P-256), and protocols increasingly favor ECDSA or EdDSA over RSA for digital 

signatures. While ECC requires careful implementation to prevent side-channel attacks, its 

advantages in speed, size, and security have made it the state-of-the-art for public-key cryptography 

in the pre–post-quantum era. 

3.3 Key Exchange Protocols: Diffie–Hellman and ECDH 

Secure key exchange between parties without prior contact is a central challenge in cryptography, 

elegantly solved by the Diffie–Hellman (DH) protocol. In DH, two parties exchange values derived 

from private secrets and a common group base, allowing them to compute a shared secret over an 

insecure channel. The security of DH is based on the difficulty of the discrete logarithm problem. 

Although an eavesdropper can observe the exchanged public values, recovering the secret keys is 

computationally infeasible with proper parameters. Originally proposed in 1976, DH was the first 

practical public-key algorithm and remains fundamental in secure communication protocols such as 
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TLS, IPsec, and SSH, especially in its ephemeral form which offers forward secrecy (ensuring past 

communications remain secure even if long-term keys are compromised). 

The elliptic curve variant, Elliptic Curve Diffie–Hellman (ECDH), follows the same principle but 

operates on elliptic curve groups. It enables key exchange by multiplying private scalars with a base 

point on the curve. ECDH provides equivalent security with much smaller key sizes and faster 

computations than traditional DH. For example, a 256-bit ECDH key (e.g., Curve25519) matches 

the security of a 3072-bit DH key, yet is more efficient in terms of bandwidth and processing. 

Consequently, TLS 1.3, modern VPNs (e.g., WireGuard), and secure messaging protocols (e.g., 

Signal’s X3DH) all rely on ECDH for their initial key establishment. 

However, DH and ECDH [1][6][26] alone do not authenticate the parties involved, leaving them 

vulnerable to man-in-the-middle attacks. Therefore, real-world implementations must pair 

DH/ECDH with authentication mechanisms, such as digital signatures or trusted public key 

certificates. When authenticated, DH-based exchanges not only establish confidentiality but also 

ensure forward secrecy—critical for long-term data protection. Variants like ElGamal key exchange 

and multi-stage DH protocols (as in Signal) build upon the core DH concept to enable secure and 

flexible key agreements. In summary, DH and its elliptic curve counterparts remain cornerstones of 

secure key exchange, enabling encrypted communication across untrusted networks in a scalable 

and efficient manner. 

3.4 Applications in PKI, SSL/TLS, and Digital Signatures 

Public-key cryptography underpins modern digital security, with its primary applications in secure 

key exchange, digital identity verification, and data integrity. One of its most visible uses is in 

Public Key Infrastructure (PKI), which secures the web via X.509 certificates. These certificates 

bind a public key to an entity’s identity and are signed by trusted Certificate Authorities (CAs) 

using algorithms like RSA or ECDSA. When a user connects to a secure website, the server 

presents such a certificate; the browser verifies its signature using the CA’s public key, ensuring the 

server's authenticity. After identity verification, key exchange occurs—typically via ephemeral 

ECDH—to derive a symmetric session key for encryption. 

In SSL/TLS protocols, public-key cryptography plays multiple roles: the server's certificate is 

signed by a CA, and key exchange is performed using ephemeral Diffie–Hellman or ECDH. While 

older versions (like TLS 1.2) sometimes used RSA to encrypt session keys directly, TLS 1.3 

streamlines the process: it relies exclusively on ECDH (e.g., X25519, P-256) for key exchange and 

uses digital signatures only for authenticating the handshake, providing both forward secrecy and 

authenticated key agreement. Beyond TLS, digital signatures are widely used to verify software 

integrity (code signing), secure firmware boot, sign cryptocurrency transactions (e.g., ECDSA in 

Bitcoin), and authenticate users in secure messaging and email (e.g., PGP, GPG). In all these cases, 

asymmetric signatures ensure non-repudiation and data integrity, as only the private key holder 

can produce a valid signature verifiable with the corresponding public key. 

PKI relies primarily on RSA and ECC. RSA (2048 or 3072 bits) remains common for certificates, 

but ECC (P-256, P-384) is increasingly favoured due to smaller key sizes and better efficiency. 

Algorithms like DSA are largely deprecated in public PKI, while Ed25519—a fast and secure 

signature scheme—is gaining traction in SSH, secure messaging, and specialized applications, 

though not yet widely used in X.509 certificates. Hybrid encryption is often employed in secure 

communications (e.g., PGP), where a symmetric key (e.g., for AES encryption) is encrypted with 
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public-key algorithms like RSA or ElGamal for each recipient. This approach combines the 

efficiency of symmetric ciphers with the flexibility of public-key encryption for multi-recipient 

communication. 

Other applications include authentication protocols (e.g., FIDO2/WebAuthn, where devices sign 

challenges with private keys) and blockchains, where public-key cryptography secures 

transactions. In systems like Bitcoin and Ethereum, users sign transactions with ECDSA over the 

secp256k1 curve, and the public keys verify authenticity without exposing private information. 

In summary, public-key cryptography is central to establishing trust and enabling secure 

communications across the internet. RSA and ECC (especially ECDSA/ECDH) remain dominant in 

2025, with ECC becoming the preferred standard due to its compactness and performance 

advantages. From websites and VPNs to firmware and financial transactions, asymmetric 

cryptography is the backbone of secure infrastructure. Looking ahead, the field is preparing to 

transition to post-quantum algorithms, as both RSA and ECC would be vulnerable to sufficiently 

powerful quantum attacks—a topic explored in subsequent sections. 

4. Cryptanalysis 

No cryptographic algorithm is immune to attack, and the field of cryptanalysis is devoted to 

finding weaknesses in cryptographic primitives. Over the years, cryptanalysts have developed a 

variety of techniques to break or weaken ciphers. In the early 1990s, Eli Biham and Adi Shamir 

unveiled differential cryptanalysis, a powerful chosen-plaintext attack that exploits patterns in how 

differences in inputs can affect differences in outputs through the cipher. Originally a classified 

technique, differential cryptanalysis was shown publicly to be effective against many cipher designs 

and was famously applied to a reduced-round variant of DES. Soon after, in 1993 Mitsuru Matsui 

introduced linear cryptanalysis, an attack that uses linear approximations to describe a cipher’s 

behaviour and requires a large number of known plaintexts to derive key bits. Matsui’s method was 

used to analytically break DES (again in a reduced-round scenario), and its description marked the 

first successful cryptanalysis of DES purely by academic research (he was able to recover a DES 

key with about 2
43

 known plaintexts). These techniques forced cipher designers to adjust parameters 

(e.g., increasing the number of rounds) and to analyze new algorithms against such advanced 

methods. 

Beyond block ciphers, cryptanalysis has targeted other components too. The hardness of RSA relies 

on the difficulty of prime factorization; as factorization algorithms improved (for example, the 

Number Field Sieve), RSA keys needed to grow in size. By 2010 researchers factored a 768-bit 

RSA modulus, a feat that underscored the recommendation to use RSA keys of 2048 bits or more 

for long-term security. For discrete-log-based systems (like DSA or ECC), improved algorithms 

(pollard rho, index calculus, etc.) similarly influence required key sizes. Another important class of 

attacks are side-channel attacks, which bypass purely mathematical weaknesses by exploiting 

physical implementations. In 1996, Paul Kocher demonstrated that the time taken to perform 

private key operations could leak information about the key – these timing attacks were able to 

extract RSA and Diffie–Hellman keys from software implementations by carefully measuring 

operation latency. Subsequent research showed that power consumption (power analysis) and other 

side-channel emissions from cryptographic devices could be analyzed to recover secrets, forcing 

developers to implement constant-time algorithms and other countermeasures in cryptographic 

libraries and hardware. Side-channel attacks remind us that even a theoretically strong algorithm 

can be undermined by a clever attack on its real-world usage. 
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Cryptanalysis also extends to cryptographic protocols and systems. For example, weaknesses in 

the way random numbers are generated have led to catastrophic breaks (as seen in some public-key 

implementations where poor randomness yielded predictable keys). Protocol attacks, like man-in-

the-middle or downgrade attacks, target how cryptographic algorithms are used in context. A 

historical example of protocol-level cryptanalysis was the work done at Bletchley Park during 

World War II, where allied cryptanalysts (including Alan Turing) broke the Enigma cipher by 

exploiting procedural flaws and repetitive aspects of the German encryption protocols – 

underscoring Kerckhoffs’s principle that the security of a cipher must depend only on the key, not 

on the obscurity of the algorithm. Through continuous scrutiny by cryptanalysts, the community 

gains confidence in algorithms that withstand years of attack. When weaknesses are found – as with 

DES, MD5, or SHA-1 – those algorithms are phased out and replaced by newer, stronger designs. 

This evolutionary pressure is essential to maintain privacy and security in the face of evolving 

threats. 

5. Performance and Scalability 

The choice of cryptographic algorithms in practice is often dictated not just by security but by 

performance, resource constraints, and scalability (supporting many users or high data throughput). 

Here we compare symmetric vs asymmetric algorithms in terms of speed, key size, and operational 

cost, and examine how these factors play out in various environments (servers, mobile, 

embedded/IoT). We also provide a comparative table of algorithm characteristics, especially 

relating key sizes to security levels, which is crucial for long-term security planning. 

Key Sizes vs. Security Levels: Cryptographers measure security in bits – e.g., ―128-bit security‖ 

means an attacker would need about 2
128

 operations to break the scheme (equivalent to brute-

forcing a 128-bit key). Symmetric ciphers define the baseline: AES-128 is considered 128-bit 

secure. Asymmetric schemes require much larger key sizes to reach the same security because 

known attacks are faster than brute force. The Table1 below (based on NIST and NSA guidelines) 

shows the rough equivalences: 

Security Level 

(bits) 

Symmetric Cipher (key 

size) 

RSA / DH 

(modulus size) 

ECC (field size) 

~80 

(deprecated) 

2-key Triple DES (112-bit 

key) 

1024-bit 

RSA/DH 

~160-bit curve (e.g., secp160) 

112 3-key Triple DES (168-bit 

key, ≈112-bit security) 

2048-bit 

RSA/DH 

224-bit curve (e.g., secp224) 

128 AES-128 (128-bit key) 3072-bit 

RSA/DH 

256-bit curve (secp256r1, 

Curve25519) 

192 AES-192 (192-bit key) 7680-bit 

RSA/DH 

384-bit curve (secp384r1) 

256 AES-256 (256-bit key) 15360-bit 

RSA/DH 

521-bit curve (secp521r1) 

Table 1:: Comparable strengths for symmetric and asymmetric algorithms. Approximate 

recommendations from NIST SP 800-57 and related sources. 

From the table, for example, a 256-bit ECC key (like secp256r1) provides about the same security 

as a 3072-bit RSA key. This dramatic difference is why ECC is preferred for higher security with 

less computational load. It is evident that asymmetric keys must grow much faster to maintain 
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security. RSA-2048 is sufficient for now (~112-bit security), but to reach 128-bit security one must 

go to RSA-3072. In constrained environments, RSA-3072 or RSA-4096 can be problematic (in 

terms of CPU and memory), whereas ECC-256 or ECC-384 is manageable and offers equal or 

better security. 

 Hardware vs. Software Efficiency: Symmetric ciphers (AES, ChaCha20) are generally orders of 

magnitude faster than public-key operations. AES can often be executed in a few cycles per byte 

with modern CPU instructions. Asymmetric ops like RSA or ECDSA involve big integer math 

(modular exponentiation or scalar multiplication) which is much slower. For perspective, on a 

typical CPU, AES throughput (with AES-NI) might be 5–10 GB/s, whereas RSA-2048 can do 

only a few thousand operations per second. ECC is faster than RSA at equivalent security: for 

example, a 256-bit ECDSA signing might take on the order of microseconds to a millisecond, 

whereas a 3072-bit RSA signing could take a few milliseconds or more. On embedded devices, 

RSA’s disparity is more pronounced – RSA key generation in particular is extremely slow 

(finding random primes). A study noted RSA key generation can be 100–1000 times slower than 

ECC key generation for embedded systems. Also, RSA private operations scale roughly with the 

cube of the modulus length (if using basic algorithms), while ECC scales more gently with key 

size. 

Many modern CPUs have hardware accelerators for AES (AES-NI on Intel, ARMv8 crypto 

extensions) which significantly boosts symmetric encryption speed (4×–8× improvement). 

Likewise, some chips accelerate SHA-256, GCM multiplication, etc. Asymmetric operations can 

also be accelerated (some CPUs have big-integer arithmetic units or there are dedicated 

cryptographic co-processors in smart cards and HSMs). Nevertheless, the difference in 

throughput remains: symmetric encryption can handle data streams at network line rates or 

storage speeds, whereas asymmetric crypto is typically used sparingly (e.g., one RSA op to set up 

a session, then stream with symmetric). 

 Mobile and Embedded Constraints: On smartphones, not all devices had AES hardware until 

recent years. This is where ChaCha20 shined – it’s a software-efficient cipher not needing 

specialized hardware and was shown to significantly outperform AES-256 on mobile CPUs 

without AES-NI. Many mobile TLS stacks prefer ChaCha20-Poly1305 when AES hardware 

support is absent, to reduce latency and battery usage. Embedded IoT devices often run on low-

power microcontrollers (no hardware crypto, limited MHz). On such devices, performing a 2048-

bit RSA handshake could be very slow (hundreds of milliseconds or more), whereas an ECC 

handshake (Curve25519) might complete in a few milliseconds, making ECC much more suitable 

for IoT authentication. Additionally, memory constraints make large RSA keys problematic: an 

RSA-2048 key pair might require several kilobytes of storage and buffers, while a Curve25519 

key is 32 bytes and signatures 64 bytes, much more compact. As Microchip’s whitepaper noted, 

at 128-bit security, RSA public keys and signatures are about 6× larger than ECC’s, and private 

keys 12× larger, which matters for storing keys securely and transmitting them (e.g., certificates). 

Therefore, for protocols like Zigbee, Bluetooth, and others targeting constrained devices, ECC is 

the preferred choice. 

 Throughput vs. Latency: Symmetric ciphers have negligible latency overhead – encrypting a 

16-byte block with AES might be <1 microsecond on modern processors. Asymmetric ops have 

significant latency: a single RSA-2048 sign might take say 1–5 ms on a server (much more on a 

microcontroller). This is why protocols minimize the number of public-key operations per 

session. In TLS, typically only two to three asymmetric ops occur (server signature, optionally 

client signature, and key exchange), everything else is symmetric. Another example: PGP email 

encryption uses one RSA/ECC operation per recipient to encrypt the session key, but then uses 
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fast symmetric crypto for the bulk message. In blockchain, verifying an ECDSA signature (which 

every node does for every transaction) is optimized with algorithms and sometimes hardware 

because tens of thousands of signature verifies per second may be needed system-wide – yet ECC 

is still manageable (verification is faster than signing and libraries like libsecp256k1 are highly 

optimized). 

 Parallelism and Scalability: Symmetric crypto can take advantage of parallelism (e.g., 

encrypting multiple blocks in parallel in CTR or GCM mode, using multiple cores or SIMD 

instructions). Asymmetric crypto typically involves large serial computations that are harder to 

parallelize per operation (though you can of course do many separate RSA/ECDSA ops in 

parallel if you have many cores). There is research on using GPUs for RSA/ECC at high 

throughput (e.g., TLS terminators), and FPGA or ASIC acceleration for these tasks. 

Cryptographic agility and algorithm choices: Performance considerations sometimes drive 

algorithm choices. For instance, some organizations prefer Ed25519 (EdDSA) over RSA for 

signing because it’s much faster at high security and keys are small – important for things like 

DNSSEC or Certificate Transparency logs that need to handle huge volumes of signatures. 

Similarly, some VPNs (WireGuard) chose ChaCha20 over AES for simplicity and performance 

across platforms. On servers with dedicated AES instructions, AES-GCM might achieve ~10 

Gbit/s per core, which is sufficient for most use, but on devices without, ChaCha20 is more 

consistent. Comparative Table of Algorithms is presented below (Table 2) with summary of key 

characteristics of some representative algorithms: 

 

Algorithm Type Key Sizes 

(bits) 

Security 

(bits) 

Notable Features & Usage 

AES Symmetric 

Block 

Cipher 

128, 192, 

256 key; 

128-bit 

block 

128, 192, 256 Standard for encryption (fast in 

hardware/software); AES-256 

used for top security. Resistant to 

known cryptanalysis. Widely 

used in TLS, IPsec, disk 

encryption. 

ChaCha20-

Poly1305 

Symmetric 

Stream 

AEAD 

256-bit key; 

96-bit nonce 

~256 Modern stream cipher with 

MAC; very fast in software (3× 

faster than AES-GCM on some 

mobiles). Used in TLS 1.3 as an 

alternative cipher, in WireGuard 

VPN, etc. 

3DES 

(TDEA) 

Symmetric 

Block 

Cipher 

112-bit 

(effective, 

168-bit key) 

~112 Legacy triple-DES. 64-bit blocks 

(Sweet32 vulnerable). 

Deprecated (disallowed after 

2023) due to slow speed and 

small block size. 
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RSA Public-key 

(IFP) 

2048, 3072, 

4096 ... 

~112 

(@2048) , 

~128 

(@3072) 

Dominant legacy public-key for 

encryption & signatures. Security 

based on factoring. Large keys 

(2048+ bits). Fast public ops, 

slow private ops. Still widely 

used in certificates/PKI, but 

slowly being replaced by ECC. 

Vulnerable to quantum (Shor’s 

algorithm). 

Diffie–

Hellman 

Key 

Exchange 

(DLP) 

2048, 3072 

mod p 

(group size) 

~112, ~128 Classic key agreement. Often 

used with ephemeral keys (DHE). 

Large p for security. Now mostly 

replaced by ECDH in new 

systems for efficiency. 

DSA Signature 

(DLP) 

2048-bit p, 

224/256-bit 

q 

~112 

(@2048/224) 
Digital Signature Standard 
(FIPS 186). Similar to ElGamal 

signature. Smaller signatures than 

RSA. Requires good randomness. 

Rare in modern use outside 

government compatibility. 

Superseded by ECDSA. 

ECDH 

(Curve25519) 

Key 

Exchange 

(ECDLP) 

256-bit field 

(curve) 

~128 Efficient ECC Diffie–Hellman. 

Curve25519 (Montgomery) offers 

speed and security (no known 

weakness). Used in TLS 1.3 

(X25519) and many protocols 

(Signal, WireGuard). Very fast 

even on embedded. 

ECDSA (P-

256) 

Signature 

(ECDLP) 

256-bit 

curve 

(secp256r1) 

~128 Elliptic Curve Signature. Much 

smaller keys/signatures than 

RSA. Widely used in TLS certs, 

Bitcoin, etc. Requires secure 

random nonce. 

Ed25519 Signature 

(ECDLP) 

256-bit 

curve 

(twisted 

Edwards) 

~128 EdDSA (Ed25519): Schnorr-

based signature. Fast, no bias 

issues (deterministic nonce). 64-

byte signature. Used in SSH, 

modern applications. Growing 

popularity for security and 

simplicity. 

ElGamal Encryption 

(DLP) 

2048+ bit p ~112 

(@2048) 
ElGamal encryption 
(homomorphic property: 

multiplicative). Not common 

standalone, but underlies many 

systems (e.g., PGP uses ElGamal 

or RSA for session key 

encryption). Ciphertext is double 

the size of plaintext + overhead. 
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SHA-256 Hash – (256-bit 

output) 

128 

(collision) 

Cryptographic hash (not an 

encryption algorithm, but key in 

integrity). Mentioned because in 

performance context, hashing is 

often alongside encryption. SHA-

256 can be hardware accelerated; 

required in many protocols. 

Table 2 :: Comparative Table of Algorithms: Below is a summary of key characteristics of some 

representative algorithms 

(Here IFP = Integer Factorization Problem; DLP = Discrete Log Problem; ECDLP = Elliptic Curve 

Discrete Log Problem.) 

From a performance perspective, symmetric algorithms vastly outperform asymmetric for 

equivalent security. That is why designs use asymmetric crypto sparingly (for initial key exchange 

or signing a digest) and switch to symmetric for bulk encryption. For example, a secure channel 

setup might involve a few asymmetric operations (taking a few milliseconds total), after which 

gigabytes of data can flow encrypted by AES at negligible CPU cost. Hardware support has 

narrowed some gaps. With AES-NI, AES encryption on even a modest CPU can exceed 5 Gbps 

throughput, making it essentially free relative to typical network speeds. GCM authentication is 

also hardware-optimized on many platforms. On the other hand, an RSA-2048 sign operation might 

be ~0.1 ms on a high-end CPU (tens of thousands per second), which is fine for a single SSL 

handshake but would be expensive if you had to do it for every network packet. 

Finally, consider scalability in multi-user systems: On a server handling 10,000 TLS handshakes 

per second, RSA would impose a heavy load (10k RSA decrypts/sec). Some large platforms like 

Cloudflare switched to ECDSA and ECDH to drastically reduce CPU usage per handshake, thus 

scaling to more connections with the same hardware. In blockchain, thousands of signatures need 

verifying per block – ECC makes that feasible, whereas RSA-size signatures and keys would bloat 

the system and slow down processing. In embedded/IoT, limited battery and CPU means heavy 

asymmetric crypto can shorten device battery life or make operations sluggish. ECC at 256-bit is 

feasible on small microcontrollers (taking maybe tens of milliseconds for a signature), while RSA-

2048 might take seconds on the same device – unacceptable for user experience or real-time 

constraints. That is why protocols like Thread and Zigbee exclusively use ECC for joining 

networks, and why protocols like WireGuard opted for an all-ECC approach to be future-proof for 

IoT use. 

In conclusion, performance considerations strongly favour: use symmetric crypto for data, use the 

―lightest‖ asymmetric crypto that meets security (hence ECC over RSA in new designs), offload to 

hardware where possible, and be mindful of key sizes relative to security to avoid undue overhead. 

We have seen a clear trend: industry moving to ECC for better performance at high security, and 

standardized security levels aligning with those shown in the table (128-bit being a common target, 

which means 3072-bit RSA or 256-bit ECC, the latter being far more efficient). Next, we will see 

how these choices manifest in real-world applications. 

6. Application Use-cases 

In this section, we consider several real-world application domains and how they employ 

cryptographic algorithms: secure messaging, VPNs, blockchain/cryptocurrencies, and IoT. Each use 

case has specific requirements and constraints that influence the choice of ciphers and protocols. 

Cryptographic algorithms are foundational to securing a wide range of modern digital systems. This 

section explores how different real-world domains—secure messaging, VPNs, blockchain, and 
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IoT—employ cryptographic primitives based on their specific performance and security 

requirements. In the domain of secure messaging, applications like Signal and WhatsApp utilize the 

Signal Protocol, which combines asymmetric and symmetric cryptography to ensure end-to-end 

encryption [1]. Key exchange is performed using the X3DH protocol, based on elliptic-curve 

Diffie–Hellman over Curve25519, establishing a shared secret between users [2]. Once a secure 

channel is established, symmetric ciphers like AES-256-CBC or XChaCha20 are used for efficient 

message encryption, alongside HMAC-SHA256 for authentication [3]. A key innovation is the 

double ratchet mechanism, which ensures forward and future secrecy by frequently updating keys 

using symmetric and asymmetric ratchets [4]. This ensures that compromising one message key 

does not reveal past or future messages. Users verify identities through static public keys 

(Curve25519) using out-of-band verification methods, providing protection against man-in-the-

middle attacks. This hybrid model achieves strong security with high performance, setting a 

benchmark for secure messaging platforms [5]. 

For Virtual Private Networks (VPNs), cryptographic performance is critical due to the need to 

encrypt entire network traffic in real time. Modern VPN protocols like WireGuard exemplify a 

minimal and efficient cryptographic design, using Curve25519 for key exchange, ChaCha20-

Poly1305 for authenticated encryption, and BLAKE2s for hashing [6]. WireGuard avoids the 

complexity of algorithm negotiation by fixing its algorithm suite, which enhances performance and 

security while maintaining a small codebase. Its use of AEAD (Authenticated Encryption with 

Associated Data) modes ensures confidentiality and integrity with minimal overhead, especially on 

devices lacking AES hardware. In contrast, IPsec, a more established suite often used in enterprise 

environments, relies on RSA or (EC)DH for key negotiation through the IKE protocol, and 

commonly uses AES-GCM for packet encryption [7]. AES-GCM is preferred for its speed and 

built-in authentication, with configurations supporting AES-GCM-128 or AES-GCM-256. 

Although more flexible, IPsec is relatively complex and less efficient than WireGuard. Nonetheless, 

both VPN types uphold key cryptographic principles: secure key exchange via public-key 

cryptography, symmetric encryption for bulk data, and forward secrecy through ephemeral key 

mechanisms [8]. 

In blockchain and cryptocurrencies, cryptography ensures both transactional integrity and 

decentralized trust. Digital signatures are central: Bitcoin and Ethereum use ECDSA over the 

secp256k1 elliptic curve to prove ownership and authorize transactions [9]. A user’s public key 

becomes their identity on the blockchain, and transaction validation depends on the unforgeability 

of ECDSA. Signature size efficiency and verification speed make ECC the default, as public 

ledgers must store and validate thousands of signatures with minimal space and computation [10]. 

Hash functions also play a key role: Bitcoin uses SHA-256 (often double-hashed) for mining and 

block linking, while Ethereum employs Keccak-256 (a SHA-3 variant) for address generation and 

mining [11]. Most blockchains do not encrypt data, instead relying on pseudonymity for privacy. 

However, privacy-centric blockchains like Monero and Zcash incorporate advanced cryptography 

such as ring signatures and zero-knowledge proofs (e.g., zk-SNARKs) to achieve anonymity and 

confidentiality [12]. The blockchain setting exemplifies cryptography’s power in decentralized 

environments, emphasizing ECC for compact, verifiable identity and hashing for integrity and 

consensus mechanisms. 

In the Internet of Things (IoT), cryptography faces unique challenges due to device constraints like 

limited power, memory, and computational resources. Asymmetric cryptography in IoT typically 

uses ECC (e.g., Curve P-256) for key exchange and device authentication, since ECC offers small 

key sizes and fast computation [13]. Symmetric encryption is predominantly handled by AES-128 

due to its adequate security and widespread hardware support in microcontrollers. When AES 
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hardware is unavailable, lightweight ciphers such as ChaCha20, PRESENT, or NIST’s Ascon 

(standardized in 2023 for lightweight AEAD) are preferred [14]. Communication protocols like 

Bluetooth LE and Zigbee already use AES-128-CCM or ECDH for security, with newer systems 

integrating cryptographic accelerators for ECC and AES directly in hardware. To reduce 

computational burden, some IoT systems opt for pre-shared keys (PSKs) or symmetric group keys, 

although these approaches lack scalability. Secure firmware updates—crucial for IoT—employ 

ECC-based digital signatures (e.g., Ed25519 or ECDSA) to ensure authenticity [15]. Moreover, 

bandwidth constraints in IoT networks necessitate compact cryptographic constructs, making ECC-

based schemes favorable due to their smaller overhead compared to RSA. The adoption of 

standards like COSE and Ascon further reflects the cryptographic shift toward lightweight and 

efficient solutions tailored to embedded environments. Overall, cryptography in IoT balances 

performance and security through tailored use of established primitives, ensuring robustness 

without overburdening constrained devices [16]. 

In summary, across diverse application domains, cryptographic implementations follow a common 

pattern: asymmetric schemes (typically ECC-based) for key establishment or identity, symmetric 

encryption (like AES or ChaCha20) for efficiency, and secure hashing for integrity. Each domain 

optimizes these components based on operational needs—secure messaging favours agility and 

secrecy, VPNs demand high throughput, blockchains prioritize signature verification and data 

integrity, while IoT solutions emphasize lightweight operations with minimal resource usage. This 

adaptability illustrates cryptography’s foundational yet flexible role in securing modern digital 

ecosystems [17]. 

7. Post Quantum Cryptography Context 

The looming advent of quantum computers threatens to upend many of the cryptographic systems 

in use today. In the 1990s, Peter Shor discovered a quantum algorithm that can factor large integers 

and compute discrete logarithms in polynomial time on a hypothetical quantum computer [18]. 

Shor’s algorithm means that RSA, Diffie–Hellman, and elliptic-curve cryptosystems—all of whose 

security rests on those two hard problems—would be effectively broken if sufficiently powerful 

quantum computers are realized. Additionally, Lov Grover developed a quantum search algorithm 

that accelerates brute-force search, providing a quadratic speed-up for attacking symmetric ciphers 

or hash functions [19]. In practice, Grover’s algorithm means that a quantum computer could brute-

force a key space of size N in roughly √N operations, so a 128-bit key would have the effective 

security of a 64-bit key against a quantum attacker. This quantum threat prompted the field of post-

quantum cryptography (PQC), which seeks cryptographic algorithms that can resist quantum 

attacks. These are often based on mathematical problems believed to be hard for quantum 

computers, such as lattice problems, error-correcting codes, multivariate polynomial equations, and 

hash-based constructions [20]. 

Beginning in 2016, NIST initiated an open competition to develop and standardize quantum-

resistant cryptography. After multiple rounds of evaluation, NIST announced the first group of 

winning algorithms in July 2022 [21]. Notably, all of the initial selections for public-key encryption 

and key establishment are lattice-based: the algorithm CRYSTALS-Kyber was chosen for general-

purpose encryption/KEM (Key Encapsulation Mechanism). For digital signatures, NIST selected 

CRYSTALS-Dilithium (lattice-based) as the primary algorithm, along with FALCON (lattice-

based) and SPHINCS+ (hash-based) as alternatives for specific use-cases [22]. These algorithms 

are based on problems like structured lattice challenges and hash-based combinatorial structures 

that even quantum computers should struggle to solve, according to current knowledge. A few other 

candidates (such as the code-based Classic McEliece) are being considered in ongoing evaluation 
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rounds, reflecting a desire for diversity in defense in case any one problem class is weakened by 

future advances [23]. 

Deploying post-quantum cryptography will be a long and complex process. Cryptographic 

standards and protocols must be updated, software and hardware implementations optimized, and 

interoperability ensured—all while maintaining security against both quantum and classical 

attackers [24]. Moreover, care is needed to avoid introducing new vulnerabilities; for instance, 

some PQC algorithms have much larger key sizes or ciphertext sizes, which can pose practical 

challenges [25]. Nevertheless, the transition to quantum-safe algorithms is underway. As one 

observer noted in Communications of the ACM, the road to post-quantum cryptography will 

require concerted effort from academia, industry, and government to prepare systems before large-

scale quantum computers arrive [26]. This proactive migration is vital to ensure that data encrypted 

today remains secure for years to come, in the era of quantum computing. 

8. Conclusion 

Cryptography has come a long way from its early roots – evolving from simple ciphers to a 

sophisticated science underpinning the security of the modern Internet. We have robust symmetric 

ciphers (AES and others) to protect data at rest and in transit, and powerful public-key systems 

(RSA, ECC, DH) enabling secure key exchange and digital signatures that form the backbone of 

digital trust. At the same time, the continual efforts of cryptanalysts have kept the field dynamic: 

any weakness discovered in an algorithm leads to improved designs and standards (for example, the 

retirement of SHA-1 in favour of SHA-2/SHA-3, or the replacement of DES with AES). As we 

stand on the threshold of the quantum era, the cryptographic community is proactively developing 

and standardizing new tools to ensure security against quantum attacks. The coming years will see a 

gradual but critical migration to these post-quantum algorithms, alongside the cryptographic best 

practices already in place. Cryptography is an arms race between designers and attackers – but with 

rigorous analysis, peer-reviewed research, and prudent standards, cryptography will continue to 

enable private and authenticated communication in the face of whatever computational 

advancements lie ahead. 
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